Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 31(6): 065401, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31627206

RESUMO

Hole transporting layers (HTLs) play a crucial role in the realization of efficient and stable perovskite solar cells (PSCs). Copper phthalocyanine (CuPc) is a promising HTL owing to its thermal stability and favorable band alignment with the perovskite absorber. However, the power conversion efficiency (PCE) of PSCs with a CuPc HTL is still lagging behind highly efficient solar cells. Herein, a p-type tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) is employed as an interlayer between the perovskite and CuPc HTL in all-vacuum deposited PSCs. The F4-TCNQ interlayer improves the conductivity of both MAPbI3 and CuPc, reduces the shunt pathway and facilitates an efficient photoexcited holes transfer from the valance band of the MAPbI3 to the LUMO of the F4-TCNQ. Consequently, the best solar cell device with an F4-TCNQ interlayer achieved a PCE of 13.03% with a remarkable improvement in fill factor. Moreover, the device showed superior stability against thermal stress at 85 °C over 250 h and retained ∼95% of its initial efficiency. This work demonstrates a significant step towards all-vacuum deposited perovskite solar cells with high thermal stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...